Performance analysis of an interacting quantum dot thermoelectric setup
نویسندگان
چکیده
In the absence of phonon contribution, a weakly coupled single orbital noninteracting quantum dot thermoelectric setup is known to operate reversibly as a Carnot engine. This reversible operation, however, occurs only in the ideal case of vanishing coupling to the contacts, wherein the transmission function is delta shaped, and under open-circuit conditions, where no electrical power is extracted. In this paper, we delve into the thermoelectric performance of quantum dot systems by analyzing the power output and efficiency directly evaluated from the nonequilibrium electric and energy currents across them. In the case of interacting quantum dots, the nonequilibrium currents in the limit of weak coupling to the contacts are evaluated using the Pauli master equation approach. The following fundamental aspects of the thermoelectric operation of a quantum dot setup are discussed in detail: (a) With a finite coupling to the contacts, a thermoelectric setup always operates irreversibly under open-circuit conditions, with a zero efficiency. (b) Operation at a peak efficiency close to the Carnot value is possible under a finite power operation. In the noninteracting single orbital case, the peak efficiency approaches the Carnot value as the coupling to the contacts becomes smaller. In the interacting case, this trend depends nontrivially on the interaction parameter U . (c) The evaluated trends of the maximum efficiency derived from the nonequilibrium currents deviate considerably from the conventional figure of merit zT -based results. Finally, we also analyze the interacting quantum dot setup for thermoelectric operation at maximum power output.
منابع مشابه
Thermoelectric spin accumulation and long-time spin precession in a noncollinear quantum dot spin valve
We explore thermoelectric spin transport and spin dependent phenomena in a noncollinear quantum dot spin valve setup. Using this setup, we demonstrate the possibility of a thermoelectric excitation of single spin dynamics inside the quantum dot. Many-body exchange fields generated on the single spins in this setup manifest as effective magnetic fields acting on the net spin accumulation in the ...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملQuantum dot superlattice thermoelectric materials and devices.
PbSeTe-based quantum dot superlattice structures grown by molecular beam epitaxy have been investigated for applications in thermoelectrics. We demonstrate improved cooling values relative to the conventional bulk (Bi,Sb)2(Se,Te)3 thermoelectric materials using a n-type film in a one-leg thermoelectric device test setup, which cooled the cold junction 43.7 K below the room temperature hot junct...
متن کامل